10. AXIOM OF CHOICE
AND ZORN’S LEMMA

§10.1. The Axiom of Choice

We come now to the most important part of set
theory for other branches of mathematics. Although
infinite set theory is technically the foundation for all
mathematics, in practice it is normal for a mathematician
to ignore it — with two exceptions. Of course most of the
basic set constructions as outlined in chapter 2 (unions,
intersections, Cartesian products, functions etc.) are part
of a mathematician’s standard language. The second
exception is the Axiom of Choice and Zorn’s Lemma.

Zorn’s Lemma, sounds like a small theorem that’s
preparatory to a bigger theorem. That’s the usual meaning
of the word ‘lemma’. In fact it’s not a theorem at all — it’s
an axiom. And the Axiom of Choice is also an axiom,

In fact these axioms are equivalent. That is, you can
prove Zorn’s Lemma if you assume the Axiom of Choice
and you can prove the Axiom of Choice if you assume
Zorn’s Lemma. We’ll show this a bit later.

But this axiom, for indeed they are essentially just
a single axiom, is consistent with and independent from
the ZF axioms. It has the same status as the Continuum
Hypothesis, which is also an optional axiom.

In fact the Axiom of Choice (aka Zorn’s Lemma)
Is consistent with, and independent from, the ZF axioms
supplemented by the Continuum Hypothesis. This means
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that you can logically choose any one of the following
four set theories:

ZF + CH + AXC

ZF + CH + notAXC
ZF + notCH + AXC
ZF + notCH + notAXC

Unlike the Continuum Hypothesis, which is only of
interest to those studying infinite set theory, the Axiom of
Choice, and its twin Zorn’s Lemma, impinge on
mainstream mathematics.

Now the Axiom of Choice is not so called because
one is logically free to choose to accept or reject it. It’s
because it has to do with the possibility of choosing an
element from each set in a set of non-empty sets. More
accurately it’s concerned with making such choices from
a family of non-empty sets. The difference is due to the
fact that the same set may occur many times in the family.

Axiom of Choice: If (Ai)ici is a family of non-empty sets
then there exists a function
C:I>U{Ai| 1 € I} such that C(i) € Ajforeachi e I.

Making such a choice in the case of a finite family
is easily proved. But what if we have a family of non-
empty subsets of R indexed by the reals themselves? Are
we entitled to choose an element from each one of these
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sets? Suppose we have an equivalence relation with
uncountably many equivalence classes. Are we entitled to
say “choose a representative from each of the equivalence
classes”?

Intuitively it may seem obvious. But we’re
supposed to be formalising our intuition so that even
statements that are ‘intuitively obvious’ can be proved.
And if we consider the Axiom of Choice to be ‘obvious’
we haven’t succeeded in capturing it by our ZF axioms.
For the Axiom of Choice is consistent with, and
independent from, the ZF axioms. If we want it to be true
we must add it to our ZF axioms.

But before you accept it as something that “of
course must be true” consider the consequences. We’ll
prove, on the basis of the Axiom of Choice, that it’s
theoretically possible to take a solid ball of radius 1 cm,
in 3-dimensional space, decompose it into a small number
of subsets, transform these pieces by rotations and
translations, and reassemble them to form two solid balls
of radius 1 cm.

Before you dismiss this as a contradiction which
disproves the Axiom of Choice let me point out that you’d
never be able to use this operation to double a solid ball
of gold. The decomposition in the theorem is not the sort
you could carry out with a lump of gold and an extremely
sharp knife. Each of the subsets in the decomposition
would be a sort of cloud, like the set of points in R3 with
rational coordinates. They’re subsets that are so
disconnected that their volumes can’t be defined. So we
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can’t conclude that the doubling of the volume gives a
contradiction.

Nevertheless this consequence of the Axiom of
Choice is so counter-intuitive that many mathematicians
prefer to reject the axiom. You’re perfectly free to do so.
But whether you accept it or reject it, it’s a “matter of
faith”. Like a belief in God you can neither prove nor
disprove it by pure logic. But you may have good reasons
to accept or reject God that lie outside pure logic. In the
same way there may be good meta-logical reasons for
either accepting or rejecting the Axiom of Choice.

This is not the place for me to try to impose my
religious beliefs upon you, but | feel perfectly justified in
trying to persuade you to accept the Axiom of Choice. In
terms of practical applications it makes no difference
whether you accept it or reject it. No bridge is going to
fall down because the engineer accepted or didn’t accept
the Axiom of Choice. No specific example within
mathematics will owe its existence to the Axiom of
Choice. If that were the case the axiom wouldn’t be
independent of the ZF axioms. The difference between
the two positions of ‘faith’ lies simply in the way we
express some of our theorems.

Assuming the axiom of choice gives simpler and
cleaner theorems in some cases. If one denied the Axiom
of Choice, or were simply agnostic, the statement of some
theorems would be unnecessarily complicated.

Perhaps the simplest example where the Axiom of
Choice leads to a better theorem is the one about the
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existence of a basis in a vector space. You’ll have seen a
proof that every finite-dimensional vector space has a
basis.

If you assume the Axiom of Choice you’ll be able
to prove that every vector space has a basis. If you don’t
you’d have to rephrase the statement to include additional
wording that in effect amounts to assuming the axiom of
choice in this particular context.

Either way the two statements of the theorem
would have the same consequences when it came to any
specific example, because in a specific example we’d be
able to make the required choices explicitly.

So it comes down to a matter of convenience.
Where it’s relevant, assuming the Axiom of Choice gives
a simpler theorem that’s equivalent, for all practical
purposes, to the one you’d have if you didn’t accept it.

So what if you have to accept its bizarre
consequences such as doubling the sphere? In a way it’s
exciting to be able to contemplate such curiosities even
though they lie outside what’s achievable in a material
world.

Having discussed the Axiom of Choice at length
let’s now turn our attention to Zorn’s Lemma. That is, as
we shall see, essentially a restatement of the Axiom of
Choice. It’s often the version of that axiom that we
actually use. Zorn’s Lemma is a statement about the way
a set can be ordered, so let us turn our attention to
orderings on a set.
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§10.2. Partial Ordering

Real numbers are ordered by the relation <. The
subsets of R are ordered by the relation . Both are
examples of a partial order. In what follows, unless
otherwise stated, the symbol < will be used for an

arbitrary order relation. But what is a partial order?

e A relation < is reflexive if x < x for all x.

e It’s transitive if x <y and y <z implies x < z.

e It’s antisymmetric if x <y and y < x implies that x = y.
e A relation is a partial order if it has all three properties.
¢ A partially ordered set (POS) is a set X, together with
a partial order. We denote it by (X, <).

Let X be a partially ordered set. We make the
following definitions. Note that they don’t always exist.

e An element m € X is the least element of X if m <x for
all x e X. If it exists it’s denoted by min X.
e The greatest element is defined similarly and is denoted
by max X.
e An element m € X is a minimal element of X if for all
X, X <m implies that x =m

(in other words there is nothing smaller than m).
e A maximal element is defined similarly.
e The elementb € X'is a lower bound for Y < Xifb <y
forally e Y.
eAn upper bound is defined similarly.
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e The least upper bound of Y < X is the smallest upper
bound. denoted by lub(Y).

e The greatest lower bound of Y < X is the smallest
upper bound, denoted by glb(Y).

Examples 1:

(1) (R, <) is a POS. The closed interval [0, 1] has both a
least and a greatest. The half-open interval [0, 1) has a
least but not a greatest.

(2) {x € R | 2 < x? <4} has a greatest but no least.

(3) {x € Q|2 < x?< 3} has ano least or greatest.

4) (pR,<)isaPOS: min pR=Yand max R = R.
(5) {S € pR|S = I} has minimal elements but min S
doesn’t exist. Max S = R.

6) If X ={{1}, {0, 1}, {1, 2}, {0, 1, 2}, {1, 2, 3}} then
(X, ©) is a POS. {1} is the least. There’s no greatest but
{0, 1, 2} and {1, 2, 3} are maximal elements.

(7) In R, lub {x € Q | x2 < 3} is V3. There is no lower
bound (remember negative X’s)

The least and greatest elements of a set X, where
they exist, are clearly unique. Minimal and maximal
elements need not be unique. Likewise lower and upper
bounds are not unique, but least upper bounds and greatest
lower bounds, where they exist, must be unique.
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Examples 2:

greatest (hence maximal)

minimal (no least)

upper bounds for Y
no least upper bound

greatest lower bound

lower bounds for Y

In a POS two elements x, y are comparable if

either x<yory>x.
A chain is a POS in which every two elements are
comparable.

Suppose X is a partially ordered set.
e The element x € X is a predecessor of y if x <V.
e A successor is defined similarly.
e An immediate predecessor is a greatest predecessor,
denoted by x.
e An immediate successor, denoted by x* is defined
similarly. This is a different meaning to x w {x}, though
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If < represents ‘subset’ it can also be ‘immediate
successor’. (An exception would be if we reject the
Axiom of Foundation, and allow x € x in our set theory —
see Chapter 12)

Examples 3:

(1) (R, <) is a chain.

The set, S, of proper subsets of {0, 1, 2, 3} is not a chain
under the subset relation because neither {0, 1} nor

{1, 2} is a subset of the other. The empty set is min S.
There’s no greatest element but any subset of size 3 is
maximal.

(2) Consider the POS X = (3, <). Remember that we
have defined 3 to be {0, 1, 2}. The elements of X are:

<, {0}, {1}, {2} {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}.
LetY ={J, {1}, {2}}. Then {1, 2} and {0, 1, 2} are upper
bounds for Y, but {1, 2} is the least upper bound.

(3) If Sisanysetand X = ((S), ) and Y < X then LY
Is the least upper bound.

(4) In (Q, <), the set Y = {x | x> < 2} has no largest
element, plenty of upper bounds but no least upper bound.
But in (R, <), though it still has no largest element, it has
a least upper bound, namely V2.

In any partially ordered set we define x <y, x>y
and x > y in the same way that we do in ordinary
arithmetic.
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Example 6: Ifa € R then {x | x<a} is an initial segment.
Sois {x|x<a}andalso R itself.

Example 7: Let Y = {1, 2, 3} and let X = o (Y).

If a={2, 3} then X5 = {{2}, {3}, I}

The subset S = {{1, 2}, {1, 3}, {1}, {2}, {3}, D} is an
initial segment, but isn’t X3 for any a € X.

Suppose X and X are partially ordered sets. They
may well have quite different partial orders, but we’ll use
the same notation, <, for each. A function f:X—>Y is
order-preserving if x; < X, implies that f(x;) < f(x2). A
similarity is an order-preserving bijection.

Examples 8:
(1) :N—>N, defined by f(x) = 2x, is order-preserving but
it is not a similarity.

(2) f:R—R, defined by f(x) = x® is a similarity.

(3) :R— @R, defined by f(a) = {x | x < a} is order-
preserving but is not a similarity.

A subset S < X is an initial segment of X if,
whenever an element belongs to S, so do all its
predecessors. An obvious example of an initial segment

IsXa={x e X|x<a}.
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§10.3. Well Ordering

A partially ordered set is well-ordered if every
non-empty subset has a least. We’ll call a well-ordered set
a WOS.

Since, ina WOS, {x, y} has a least for all x, y, every
WOS is a chain. The £ iramdfour\ 3
converse isn’t  true S Hhem i€
since the set of real wel-ordered

that finite chains are
well-ordered.

Subsets of well-ordered sets are clearly well-
ordered. Any POS that’s similar to a WOS is itself a
WOS. In a WOS every element, x, except the greatest
element if there is one, has a unique successor, namely

min{y |y > x}.

Theorem 1: If X isa WOS, Y ¢ X and f:X->Y is a
similarity then x < f(x) for all x.

Proof: If a = min{x | f(x) < x}, then f(f(a)) < f(a), a
contradiction. % ©

Theorem 2: If X, Y are similar well-ordered sets there is
a unique similarity F :X-Y.
Proof: If F, G are similarities then FG1:X—> X is a
similarity. Thus for all x we have:

x < FG(x),
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and so G(x) < F(x).
Similarly F(x) < G(x) and so F(x) = G(x) for all x. %©

Theorem 3: If A, B are well-ordered sets and A is an
initial segment of B then A = B or
A = B, for some a € B.
Proof: Suppose A c B. Leta=min(B - A).
If x<bthenx € AsoBacA.
If x e Aand x >athena € A, a contradiction.
So x < a and hence A c Bp,.

Theorem 4: If Y is an initial segment of the well-ordered
set X and Y is similar to X then Y = X.

Proof: Suppose Y < X. Then by Theorem 3, Y = Xj for
some a € X. Suppose F:X—Y is a similarity.

Then F(a) < a, contradicting Theorem 1. % ©

Corollary: Similar initial segments of a well-ordered set
X are equal.

§10.4. Zorn’s Lemma

Many proofs involve a partially ordered set, usually
a set of subsets X of some set S that is partially ordered
by inclusion (that is using the relation <) and we would
like to be able to conclude that there is a maximal element
of X.

For example we can define linear independence for
subsets of any vector space, not just finite-dimensional
ones. If we can find a maximal linearly independent
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subset then it must be a basis, because if it doesn’t span
the space we can find one extra element that can be added
to our linearly independent subset to get an even bigger
one, contradicting the fact that it was already maximal.

Zorn’s Lemma: If (S, <) is a non-empty partially ordered
set in which every chain has an upper bound then S has a
maximal element.

Proof: Of course we can’t prove it, at least not from the
ZF axioms alone. But here’s a pseudo proof that can help
us to understand the nature of the lemma.

Take an element s; € S. If it’s maximal, then we’ve
finished.

Suppose Sp is not maximal. Then there exists s; € S such
that s < Ss.

If s; is maximal, we’ve finished. Suppose s; is not
maximal. Then there exists s, € S such that sp < s; <.

Proceeding in this way (by induction) we conclude
that there’sa chain sp <s; <$; <S3<..........

By our assumption this chain has an upper bound. That is,
there’s some tp € S such that s, < to for all n. By the above
argument, if to is not maximal we can find t; € S with

to <tj.

If we assume that there is no maximal element we
would thus have sp<s; <s; <...<tg<ti <ty <...

Again we have a chain, which must therefore have
an upper bound. “Surely this process must eventually
terminate with a maximal element.” This last statement is
the weak point in the ‘proof .
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So now we turn our attention to proving the
equivalence of the Axiom of Choice and Zorn’s Lemma.
In the process we include a number of other equivalent
statements and the proof consists of a round robin where
each statement is shown to imply the next, with the last
implying the first. This material is based on notes
prepared by Ross Street, in turn based on material by Max
Kelly.

§10.5. The Left Inverse Principle

The Left Inverse Principle states that if a function
F:A—B is onto then it has a left inverse G:.B—>A
(meaning that GF = 1g, the identity function from B to B).
I’11 show that the Left Inverse Principle implies Zorn’s
Lemma. In what follows let (X, <) be a POS, Ch(X) =
{chains in X} and let o:Ch(X)—>X be some fixed
function.

A e Ch(X) is called special if A is well-ordered by
<and c(Az) =aforalla € A.
Define Sp(X) = {special chains in X}.

Lemma 1: If A, B € Sp(X) with B — A then B is an initial
segment of A.

Proof: Suppose B — A.

Let a = min(A — B). Then A; < B.

Suppose Aa B and let b = min(B — Aa).

Since b ¢ Aa, b >a.

Clearly Bp  Aa. Letx € Aa. Thenx<a<bsox e Bp.
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Since A, B are special a = o(Aa) = o(Bp) = b, a
contradiction. Hence Aa = B. % ©

Lemma 2: Sp(X) is totally ordered by c.

Proof: Suppose A is not a subset of B and

let a = min(A — B). Clearly Aa < B.

Since A, is a special chain, it’s an initial segment of B.

If Ay = Bp for some b € B, a = 6(Aa) = o(Bp) = b, a
contradiction. Hence B=Aac A. %©

Lemma 3: USp(X) € Sp(X).

Proof: Let M = USp(X). It’s well-ordered by <.

Ifa € Mthena e A € Sp(X) for some A, so Ma = Az and
o(Ma) = c(Aa) =a. ¥©

Lemma 4: There’s no ¢:Ch(X)—X such that c(A) > a
whenever a € A € Ch(X).
Proof: Suppose such a o exists and define ‘special’
accordingly.
Let M = USp(X).
Then since o(M) is greater than every element of M,
A =M u {c(M)} is achain.
Since Asm) = M, o(As(m)) = o(M) so A e Sp(X).
Thus A < M whence o(M) € M, a contradiction. %©
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Theorem 5: The Left Inverse Principle implies Zorn’s
Lemma.
Proof: Suppose X is a partially ordered set where every
chain has an upper bound. Suppose X has no maximal
element.
LetY ={(A x)|x e X, A e Ch(X)and a<x

forall a € A}.
Define H:Y—Ch(X) by H(A, x) = Aand P:Y — X by:

P(A, X) = X.

We now show that H is onto.

Let A € Ch(X). If m = max(A) exists there exists M > m.
If A has no maximum let M be an upper bound for A.

In either case (A, M) € Y and H(A, M) = A,

Let K:Ch(X)—Y be a left inverse for H.

Then H(K(A)) = A for all A € Ch(X).

Then o = KP:Ch(X)—X has the property that c(A) > a
forall a € A, a contradiction. %©

810.6. Hausdorff’s Maximal Principle

The Hausdorff Maximal Principle states that
every partially ordered set has a maximal chain.

Theorem 6: Zorn’s Lemma implies the Hausdorff
Maximal Principle.

Proof: Let X be a partially ordered set and let

C = Ch(X), ordered by c.

Let D € Ch(C) and E = UD.
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Then E € Ch(X).

E is an upper bound for D so, by Zorn’s Lemma, C has a
maximal element. %©

810.7. The Well-Ordering Principle

The Well-ordering Principle states that every set can be
well-ordered.

Theorem 7: The Hausdorff Maximal Principle implies
the Well-ordering Principle.

Proof: Let X beasetand let W = {(A, <) |Ac Xand <
is a well-ordering for A}.

Define <on W: (A, <) < (A', <) if Alis an initial segment
of A" with < compatible with <'.

Since (W, <) is a partially ordered set it has, by the
Hausdorff Maximal Principle, a maximal chain C.

Let Y = UC. Now (Y, <) is a partially ordered set.

Let Z be a non-empty element of .

Then there exists z € A € C.
Letm=minZNnAz;=minZ N Yz=min Z.

Thus (Y, <) is a well-ordered set.

Since Cu {Y} € Ch(W), Y < C.

Suppose Y c Xand letx e X -Y.

Let Y' =Y U {x} with < extended to make x = max Y.
ThenC U {Y '} € Ch(W),andso Y ' € C,

a contradiction. %©
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§10.8 Well-Ordering and The Axiom of
Choice

Theorem 8: The Well-ordering Principle implies the
Axiom of Choice.

Proof: If (A, @) is a family of sets we well-order

U{op(a) | a € A} and let F(a) = min ¢(a) for each a € A.
Then F € TI(A, ¢). %©

Theorem 9: The Axiom of Choice implies the Left
Inverse Principle.

Proof: Suppose F:A — X is onto.

Then for x € X, {a| F(a) = x} = &.

By AXCII(A,F) #J. If G e II(A, F) then FG = 1. ¥ ©

Theorem 10: Every vector space V over a field F has a
basis.

Proof: Let S be the set of all linearly independent subsets.
Since0 € S,S=0. Sis partially ordered by —. The union
of every chain of linearly independent subsets is linearly
independent so by Zorn’s lemma there is a maximal
linearly independent subset B. If B doesn’t span V then
letv e V—(B)and so B U {v} € S, a contradiction. %©

§10.9. The Banach-Tarski Paradox

This material in the rest of this chapter is based on
Stromberg: The Banach-Tarski Paradox, American
Mathematical Monthly, March 1979.
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The Axiom of Choice is intuitively reasonable.
Given any family of non-empty sets it is possible to
choose one element from each set. However it has been
proven that this axiom can’t be proved from the ZF
axioms. The natural thing to do is to add this axiom to the
ZF collection. However | am about to show you that,
assuming the axiom of choice, | can prove that a solid
sphere can be decomposed into a finite number of pieces
and reassembled into two spheres each with the same
radius of the original sphere! The theorem is the Banach-
Tarski Paradox.

‘ . £APa .

€Y

This result is so counter- |ICARVEDANDGARVED,

. .- .. AnND THE NEXT THING T
intuitive that many mathematicians |neyt Hap 720 povexns,
regard it as a good reason to reject | + v
the Axiom of Choice. However we | nor omae
don’t actually get a contradiction. THE AXIOM
But wouldn’t it mean doubling the |, OF CHOKCE.
volume? Not really. You see the
volume of a set of points in R3 can’t
be defined for all subsets. For
example, what is the volume of the
set of points whose x- and y- coordinates are rational?

The pieces into which we ‘cut’ the sphere are so
highly disconnected that they don’t have volumes. Itis as
if they are just clouds of points. So any thought of going
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into production converting spheres of solid gold into
twice as many identical spheres must be ruled out.
Remember that a real sphere of gold is not a mathematical
sphere. It consists of lots of empty space and, more
importantly, a finite number of atoms.

You can get a feeling for the process involved if
you consider taking the positive x-axis and cutting off the
| THE BANACH-TARSKI MIRACLE ] interval (0, 1]. What’s

A LoaF oF ereAp can ee becomposep | left can be translated one
INTC A FINITE NUMBER OF BREAD CRUMBS .
AND REASSEMBLED INTo Two Loaves o | UNIt to the left to exactly

BREAD IDENTICAL TO THE ORIGINAL LOAF. cover the pOSItlve X'a.X|S

We have effectivel
@ — @ q

@ created a unit interval
from nothing.

spikedmath.com
@ 2010

The Banach-Tarski Paradox has been pounced on
by many people as supporting certain beliefs. The biblical
miracle of the five loaves and three fish feeding a crowd
of thousands has been said to be a practical application of
the Banach-Tarski Paradox. It has been said to be the
mechanism for the big-bang process in the way the
universe came about.

Of course nothing in mathematics, by itself, proves
or disproves anything in the real world. It may be that the
universe was created out of nothing in a big bang, either
by a creator God or by laws of physics. It may be true that
the loaves and fishes in the miracle were multiplied. But
other factors would be at work, not the Axiom of Choice.
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In fact the Axiom of Choice has been proved to be
both consistent with, and independent of, the other
axioms of set theory.

To Prove the Banach-Tarski Theorem, for it really
Is a theorem, we need to use some Group Theory. (See
my notes Group Theory volume 1.) Consider the group G
={(a,b|a?=Db*=1). Gisthe set of words on {a, b} with
no substring “aa” or “bbb” where two such ‘reduced’
words are multiplied by concatenating and reducing,
eliminating or inserting any substring ‘aa’ or ‘bbb’.

Consider the following finite-state machine. (See
my notes Languages and Machines.)

A

ab

I’11 use this to classify the elements of G into three
sets, according to the final state of the machine, when it
starts in state O and reads the given string.
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Fori =0, 1, 2 let Z; be the set of elements of G
which cause this finite-state machine to end in state i.
Denoting disjoint unions by ‘+’ we can write:

G=2Zy+7Z;+ 72,

Now Zo=Zia+ Z,a + Zob + {1}
Z1=Z¢a+ Zob and
Zz = Zlb.
Let Xo = Zoabb + Z;a + {1},
Xi1=Zoa+ Ziab + {b},
Xz = Zoab+ Z,abb + {bb} and
Yo=125a,
Y= Zzab,
Y, = Zzabb.
So X ={1, abb, ba, bbaba, ... }
X1 ={a, b, bab, abba, ... }
X, = {ab, bb, babb, ... }
Yo ={bba, aba, ... }
Y1 ={bbab, ... }and
Y, = {bbabb, ... }.
Then Zg = Xo + Yo,
Z1=X;+Y;and
Zo=Xo+ Y.

The effect of a, b on these subsets is as follows

(eg Xoa = Zy):
a b
z, X, | 21| %
Yo | %2 | Y1




X X
z 2 | vy 9
2 0

§10.10. Groups of Rotations in R®

Take two axes through the origin having an angle
O between them. Let A be the 180° rotation about axis 1
and let B be a 120° rotation about axis 2. Let H be the
group generated by A, B. Define a group homomorphism
o. G—H by o(w) = the rotation obtained by substituting
A for a and B for b.

S0 o(Wiw,) = o(wi)o(w,) and o(w™?) = o(w) ™.

For certain values of 6, o will not be 1-1, and in
fact it is possible for H to be finite. For example if 6 =0
then ab = ba and H consists of rotations through multiples
of 60°. And if 6 = 90° then H is the rotation group of a
triangular prism, with order 6.

If © = tan"* V2, H is the rotation group of a cube and
|[H| = 24. However if cos 6 is transcendental (this is the
case for all but a countable number of values, and in
particular it can be shown that thisisso for6 = 1) g is
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1-1. In such cases every rotation in H can be uniquely
represented by a reduced word in G. We suppose that 0 is
such a value.

Let S be the surface of a unit sphere and for all P € S let
G(P) ={c(9)(P) | g € G} denote the G-orbit of P.
Then S splits into uncountably many orbits.

By the Axiom of Choice we may choose a set C of
representatives from these orbits, and so for every P € S,
P = o(g)(Q) for some unique Q e C. Is g also unique?

A pole of a rotation R is a point on the unit sphere
which is fixed by R. Every non-trivial rotation has exactly
2 poles. For a rotation group H, a pole is a point on the
unit sphere which is the pole of some 1 # h € H. Every
other point on the unit sphere is a non-pole.

If P =c(9)(Q) = o(h)(Q) for g = h then Q is a pole of the
rotation o(g)o(h)™ = o(gh™), and this is non-trivial since
o is 1-1. Let n(G) be the set of poles for the rotation group
G.

Each non-pole is o(g)(Q) for some unique Q € C
and some unique g € G. The non-poles can thus be
partitioned into subsets according to the partition of G and
so the surface S is thus decomposed into 7 subsets:

TE(G), Xo, X1, Xz, Yo, Yl, Y2.
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By the
rotation a:
Xo—=> X1 +Y;
Yo—=> Xo+Y,

By the

rotation bbab:
Xi—=>X+Y,
Y1 —= Xo+ Yo

By the

rotation babb:
Xo—=> Xo+ Yo
Y, > X1+Y,

These seven pieces can therefore be rotated by
suitable rotations and reassembled to give one complete
copy of S plus a second copy, excluding the poles. We
have to work a little harder to get another copy of =(G).

§10.11. The Finale
Theorem 11 (BANACH-TARSKI): The surface of a
unit sphere can be decomposed into finitely many pieces
and be reassembled into two unit spheres (using only rigid
motions).
Proof: Let ¢ be a rotation through ¢ about a third axis and
choose ¢ so that m, c(r), ¢?(n), ... are disjoint (this is
possible because there are countably many angles
between the elements of n(G) and uncountably many
possible values of ¢).

Let U = c(rn) + c2(m) + ...

V=S-n-U.

Thus S = n(G) + U + V. Note that ¢c}(U) = n(G) + U.

Cut S into these 3 pieces. Rotate U by ¢ to give
n(G) + U. We now have the original sphere plus a second
copy of n(G).
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We now cut this new sphere into the 7 pieces as
above and, with the second copy of ©(G), assemble them
into two complete unit spheres.

# piece | rotated by | gives

1 n(G) |1 )

2 UnXo|c'a (1) + [(3) + (6)]
3 UnXi|ctbabb | +[(4)+(7)]
4 UnXy|clbab |+ [(2)+ ()]
5 Un Y| cla +[(4) + (7)]
6 UnYs|ctbabb | [(? ' (2)]
7 U N Y, | cbbab [(3) + (6)]
8 VnX|cta (10) + (13)
9 V " X; | chabb (8) + (11)
10 V " X, | cbbab (9) + (12)
11 VN Yo|cla (10) + (13)
12 V "Y1 | ctbabb (8) + (11)
13 V " Y, | c'bbab (9) + (12)
TOTAL | S S+S

In fact (R.M. Robinson 1947) it can be done with just five
pieces. A solid sphere can likewise be decomposed into
finitely many pieces and reassembled to form two spheres
of the same size. Simply replace each point on the surface
S by the corresponding ray and include the origin with the
poles.
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