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10. AXIOM OF CHOICE 

AND ZORN’S LEMMA 
 

§10.1. The Axiom of Choice 
 We come now to the most important part of set 

theory for other branches of mathematics. Although 

infinite set theory is technically the foundation for all 

mathematics, in practice it is normal for a mathematician 

to ignore it – with two exceptions. Of course most of the 

basic set constructions as outlined in chapter 2 (unions, 

intersections, Cartesian products, functions etc.) are part 

of a mathematician’s standard language. The second 

exception is the Axiom of Choice and Zorn’s Lemma. 

 Zorn’s Lemma, sounds like a small theorem that’s 

preparatory to a bigger theorem. That’s the usual meaning 

of the word ‘lemma’. In fact it’s not a theorem at all – it’s 

an axiom. And the Axiom of Choice is also an axiom. 

 In fact these axioms are equivalent. That is, you can 

prove Zorn’s Lemma if you assume the Axiom of Choice 

and you can prove the Axiom of Choice if you assume 

Zorn’s Lemma. We’ll show this a bit later. 

 But this axiom, for indeed they are essentially just 

a single axiom, is consistent with and independent from 

the ZF axioms. It has the same status as the Continuum 

Hypothesis, which is also an optional axiom. 

 In fact the Axiom of Choice (aka Zorn’s Lemma) 

is consistent with, and independent from, the ZF axioms 

supplemented by the Continuum Hypothesis. This means 



 172 

that you can logically choose any one of the following 

four set theories: 

 

ZF + CH + AXC 

ZF + CH + notAXC 

ZF + notCH + AXC 

ZF + notCH + notAXC 

 

 Unlike the Continuum Hypothesis, which is only of 

interest to those studying infinite set theory, the Axiom of 

Choice, and its twin Zorn’s Lemma, impinge on 

mainstream mathematics. 

 

 Now the Axiom of Choice is not so called because 

one is logically free to choose to accept or reject it. It’s 

because it has to do with the possibility of choosing an 

element from each set in a set of non-empty sets. More 

accurately it’s concerned with making such choices from 

a family of non-empty sets. The difference is due to the 

fact that the same set may occur many times in the family. 

 

Axiom of Choice: If (Ai)iI is a family of non-empty sets 

then there exists a function 

C:I→{Ai | i  I} such that C(i)  Ai for each i  I. 

 

 Making such a choice in the case of a finite family 

is easily proved. But what if we have a family of non-

empty subsets of ℝ indexed by the reals themselves? Are 

we entitled to choose an element from each one of these 
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sets? Suppose we have an equivalence relation with 

uncountably many equivalence classes. Are we entitled to 

say “choose a representative from each of the equivalence 

classes”? 

 Intuitively it may seem obvious. But we’re 

supposed to be formalising our intuition so that even 

statements that are ‘intuitively obvious’ can be proved. 

And if we consider the Axiom of Choice to be ‘obvious’ 

we haven’t succeeded in capturing it by our ZF axioms. 

For the Axiom of Choice is consistent with, and 

independent from, the ZF axioms. If we want it to be true 

we must add it to our ZF axioms. 

 But before you accept it as something that “of 

course must be true” consider the consequences. We’ll 

prove, on the basis of the Axiom of Choice, that it’s 

theoretically possible to take a solid ball of radius 1 cm, 

in 3-dimensional space, decompose it into a small number 

of subsets, transform these pieces by rotations and 

translations, and reassemble them to form two solid balls 

of radius 1 cm. 

 Before you dismiss this as a contradiction which 

disproves the Axiom of Choice let me point out that you’d 

never be able to use this operation to double a solid ball 

of gold. The decomposition in the theorem is not the sort 

you could carry out with a lump of gold and an extremely 

sharp knife. Each of the subsets in the decomposition 

would be a sort of cloud, like the set of points in ℝ3 with 

rational coordinates. They’re subsets that are so 

disconnected that their volumes can’t be defined. So we 
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can’t conclude that the doubling of the volume gives a 

contradiction. 

 Nevertheless this consequence of the Axiom of 

Choice is so counter-intuitive that many mathematicians 

prefer to reject the axiom. You’re perfectly free to do so. 

But whether you accept it or reject it, it’s a “matter of 

faith”. Like a belief in God you can neither prove nor 

disprove it by pure logic. But you may have good reasons 

to accept or reject God that lie outside pure logic. In the 

same way there may be good meta-logical reasons for 

either accepting or rejecting the Axiom of Choice. 

 This is not the place for me to try to impose my 

religious beliefs upon you, but I feel perfectly justified in 

trying to persuade you to accept the Axiom of Choice. In 

terms of practical applications it makes no difference 

whether you accept it or reject it. No bridge is going to 

fall down because the engineer accepted or didn’t accept 

the Axiom of Choice. No specific example within 

mathematics will owe its existence to the Axiom of 

Choice. If that were the case the axiom wouldn’t be 

independent of the ZF axioms. The difference between 

the two positions of ‘faith’ lies simply in the way we 

express some of our theorems. 

 Assuming the axiom of choice gives simpler and 

cleaner theorems in some cases. If one denied the Axiom 

of Choice, or were simply agnostic, the statement of some 

theorems would be unnecessarily complicated. 

 Perhaps the simplest example where the Axiom of 

Choice leads to a better theorem is the one about the 
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existence of a basis in a vector space. You’ll have seen a 

proof that every finite-dimensional vector space has a 

basis. 

If you assume the Axiom of Choice you’ll be able 

to prove that every vector space has a basis. If you don’t 

you’d have to rephrase the statement to include additional 

wording that in effect amounts to assuming the axiom of 

choice in this particular context. 

 Either way the two statements of the theorem 

would have the same consequences when it came to any 

specific example, because in a specific example we’d be 

able to make the required choices explicitly. 

 So it comes down to a matter of convenience. 

Where it’s relevant, assuming the Axiom of Choice gives 

a simpler theorem that’s equivalent, for all practical 

purposes, to the one you’d have if you didn’t accept it. 

 So what if you have to accept its bizarre 

consequences such as doubling the sphere? In a way it’s 

exciting to be able to contemplate such curiosities even 

though they lie outside what’s achievable in a material 

world. 

 

 Having discussed the Axiom of Choice at length 

let’s now turn our attention to Zorn’s Lemma. That is, as 

we shall see, essentially a restatement of the Axiom of 

Choice. It’s often the version of that axiom that we 

actually use. Zorn’s Lemma is a statement about the way 

a set can be ordered, so let us turn our attention to 

orderings on a set.  
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§10.2. Partial Ordering 
Real numbers are ordered by the relation . The 

subsets of ℝ are ordered by the relation . Both are 

examples of a partial order. In what follows, unless 

otherwise stated, the symbol  will be used for an 

arbitrary order relation. But what is a partial order? 

 

• A relation  is reflexive if x  x for all x. 

• It’s transitive if x  y and y  z implies x  z. 

• It’s antisymmetric if x  y and y  x implies that x = y. 

• A relation is a partial order if it has all three properties. 

• A partially ordered set (POS) is a set X, together with 

a partial order. We denote it by (X, ). 

 

 Let X be a partially ordered set. We make the 

following definitions. Note that they don’t always exist. 

 

• An element m  X is the least element of X if m  x for 

all x  X. If it exists it’s denoted by min X. 

• The greatest element is defined similarly and is denoted 

by max X. 

• An element m  X is a minimal element of X if for all 

x, x  m implies that x = m 

   (in other words there is nothing smaller than m). 

• A maximal element is defined similarly. 

• The element b  X is a lower bound for Y  X if b  y 

for all y  Y. 

•An upper bound is defined similarly. 
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• The least upper bound of Y  X is the smallest upper 

bound. denoted by lub(Y). 

• The greatest lower bound of Y  X is the smallest 

upper bound, denoted by glb(Y). 

 

Examples 1: 

(1) (ℝ, ) is a POS. The closed interval [0, 1] has both a 

least and a greatest. The half-open interval [0, 1) has a 

least but not a greatest. 

(2) {x  ℝ | 2 < x2  4} has a greatest but no least. 

(3) {x  ℚ | 2  x2 < 3} has a no least or greatest. 

(4) (ℝ, ) is a POS: min ℝ =  and maxℝ = ℝ. 

(5) {S  ℝ | S  } has minimal elements but min S 

doesn’t exist. Max S = ℝ. 

(6) If X = {{1}, {0, 1}, {1, 2}, {0, 1, 2}, {1, 2, 3}} then 

(X, ) is a POS. {1} is the least. There’s no greatest but 

{0, 1, 2} and {1, 2, 3} are maximal elements. 

 (7) In ℝ, lub {x  ℚ | x2 < 3} is 3. There is no lower 

bound (remember negative x’s) 

 

 The least and greatest elements of a set X, where 

they exist, are clearly unique. Minimal and maximal 

elements need not be unique. Likewise lower and upper 

bounds are not unique, but least upper bounds and greatest 

lower bounds, where they exist, must be unique.  
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Examples 2: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a POS two elements x, y are comparable if 

either x  y or y  x. 

A chain is a POS in which every two elements are 

comparable.  

 

 Suppose X is a partially ordered set. 

• The element x  X is a predecessor of y if x < y. 

• A successor is defined similarly. 

• An immediate predecessor is a greatest predecessor, 

denoted by x−. 

• An immediate successor, denoted by x+ is defined 

similarly. This is a different meaning to x  {x}, though 
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if  represents ‘subset’ it can also be ‘immediate 

successor’. (An exception would be if we reject the 

Axiom of Foundation, and allow x  x in our set theory – 

see Chapter 12) 

 

Examples 3: 

(1) (ℝ, ) is a chain. 

The set, S, of proper subsets of {0, 1, 2, 3} is not a chain 

under the subset relation because neither {0, 1} nor 

{1, 2} is a subset of the other. The empty set is min S. 

There’s no greatest element but any subset of size 3 is 

maximal. 

 

(2) Consider the POS X = (3, ). Remember that we 

have defined 3 to be {0, 1, 2}. The elements of X are: 

, {0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, {0, 1, 2}. 

Let Y = {, {1}, {2}}. Then {1, 2} and {0, 1, 2} are upper 

bounds for Y, but {1, 2} is the least upper bound. 

 

(3) If S is any set and X = ((S), ) and Y  X then Y 

is the least upper bound. 

 

(4) In (ℚ, ), the set Y = {x | x2 < 2} has no largest 

element, plenty of upper bounds but no least upper bound. 

But in (ℝ, ), though it still has no largest element, it has 

a least upper bound, namely 2. 

 In any partially ordered set we define x < y, x  y 

and x > y in the same way that we do in ordinary 

arithmetic. 
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Example 6: If a  ℝ then {x | x  a} is an initial segment. 

So is {x | x < a} and also ℝ itself. 

 

Example 7: Let Y = {1, 2, 3} and let X = (Y). 

If a = {2, 3} then Xa = {{2}, {3}, }. 

The subset S = {{1, 2}, {1, 3}, {1}, {2}, {3}, } is an 

initial segment, but isn’t Xa for any a  X. 

 

Suppose X and X are partially ordered sets. They 

may well have quite different partial orders, but we’ll use 

the same notation, , for each. A function f:X→Y is 

order-preserving if x1  x2 implies that  f(x1)  f(x2). A 

similarity is an order-preserving bijection. 

 

Examples 8: 

(1) f:ℕ→ℕ, defined by f(x) = 2x, is order-preserving but 

it is not a similarity. 

 

(2)  f:ℝ→ℝ, defined by f(x) = x3 is a similarity. 

 

(3) f:ℝ→ℝ, defined by f(a) = {x | x < a} is order-

preserving but is not a similarity. 

 

A subset S  X is an initial segment of X if, 

whenever an element belongs to S, so do all its 

predecessors. An obvious example of an initial segment 

is Xa = {x  X | x < a}. 
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§10.3. Well Ordering 
A partially ordered set is well-ordered if every 

non-empty subset has a least. We’ll call a well-ordered set 

a WOS. 

Since, in a WOS, {x, y} has a least for all x, y, every 

WOS is a chain. The 

converse isn’t true 

since the set of real 

numbers is a chain but 

it is not well-ordered. 

However it’s obvious 

that finite chains are 

well-ordered. 

Subsets of well-ordered sets are clearly well-

ordered. Any POS that’s similar to a WOS is itself a 

WOS. In a WOS every element, x, except the greatest 

element if there is one, has a unique successor, namely 

min{y | y > x}.  

 

Theorem 1: If X is a WOS, Y  X and  f:X→Y is a 

similarity then x  f(x) for all x. 

Proof: If a = min{x | f(x) < x}, then f(f(a)) < f(a), a 

contradiction. ☺ 

 

Theorem 2: If X, Y are similar well-ordered sets there is 

a unique similarity F :X→Y. 

Proof: If F, G are similarities then FG−1:X→X is a 

similarity. Thus for all x we have: 

x  FG−1(x), 
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and so G(x)  F(x). 

Similarly F(x)  G(x) and so F(x) = G(x) for all x. ☺ 

 

Theorem 3: If A, B are well-ordered sets and A is an 

initial segment of B then A = B or  

A = Ba for some a  B. 

Proof: Suppose A  B. Let a = min(B − A). 

If x < b then x  A so Ba  A. 

If x  A and x  a then a  A, a contradiction. 

So x < a and hence A  Bb. 

 

Theorem 4: If Y is an initial segment of the well-ordered 

set X and Y is similar to X then Y = X. 

Proof: Suppose Y  X. Then by Theorem 3, Y = Xa for 

some a  X. Suppose F:X→Y is a similarity. 

Then F(a) < a, contradicting Theorem 1. ☺ 

Corollary: Similar initial segments of a well-ordered set 

X are equal. 

 

§10.4. Zorn’s Lemma 
 Many proofs involve a partially ordered set, usually 

a set of subsets X of some set S that is partially ordered 

by inclusion (that is using the relation ) and we would 

like to be able to conclude that there is a maximal element 

of X. 

 For example we can define linear independence for 

subsets of any vector space, not just finite-dimensional 

ones. If we can find a maximal linearly independent 
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subset then it must be a basis, because if it doesn’t span 

the space we can find one extra element that can be added 

to our linearly independent subset to get an even bigger 

one, contradicting the fact that it was already maximal. 

 

Zorn’s Lemma: If (S, ) is a non-empty partially ordered 

set in which every chain has an upper bound then S has a 

maximal element. 

Proof: Of course we can’t prove it, at least not from the 

ZF axioms alone. But here’s a pseudo proof that can help 

us to understand the nature of the lemma. 

Take an element s0  S. If it’s maximal, then we’ve 

finished. 

Suppose s0 is not maximal. Then there exists s1  S such 

that s0 < s1. 

If s1 is maximal, we’ve finished. Suppose s1 is not 

maximal. Then there exists s2  S such that s0 < s1 < s2. 

Proceeding in this way (by induction) we conclude 

that there’s a chain s0 < s1 < s2 < s3 < ………. 

By our assumption this chain has an upper bound. That is, 

there’s some t0  S such that sn < t0 for all n. By the above 

argument, if t0 is not maximal we can find t1  S with 

t0 < t1. 

If we assume that there is no maximal element we 

would thus have s0 < s1 < s2 < … < t0 < t1 < t2 < ... 

Again we have a chain, which must therefore have 

an upper bound. “Surely this process must eventually 

terminate with a maximal element.” This last statement is 

the weak point in the ‘proof ’. 



 184 

 So now we turn our attention to proving the 

equivalence of the Axiom of Choice and Zorn’s Lemma. 

In the process we include a number of other equivalent 

statements and the proof consists of a round robin where 

each statement is shown to imply the next, with the last 

implying the first. This material is based on notes 

prepared by Ross Street, in turn based on material by Max 

Kelly. 

 

§10.5. The Left Inverse Principle 
The Left Inverse Principle states that if a function 

F:A→B is onto then it has a left inverse G:B→A 

(meaning that GF = 1B, the identity function from B to B). 

I’ll show that the Left Inverse Principle implies Zorn’s 

Lemma. In what follows let (X, ) be a POS, Ch(X) = 

{chains in X} and let :Ch(X)→X be some fixed 

function. 

A  Ch(X) is called special if A is well-ordered by 

 and (Aa) = a for all a  A. 

Define Sp(X) = {special chains in X}. 

 

Lemma 1: If A, B  Sp(X) with B  A then B is an initial 

segment of A. 

Proof: Suppose B  A. 

Let a = min(A − B). Then Aa  B. 

Suppose Aa  B and let b = min(B − Aa). 

Since b  Aa, b  a. 

Clearly Bb  Aa.  Let x  Aa. Then x < a  b so x  Bb. 
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Since A, B are special a = (Aa) = (Bb) = b, a 

contradiction. Hence Aa = B. ☺ 

 

Lemma 2: Sp(X) is totally ordered by . 

Proof: Suppose A is not a subset of B and 

let a = min(A − B). Clearly Aa  B. 

Since Aa is a special chain, it’s an initial segment of B. 

If Aa = Bb for some b  B, a = (Aa) = (Bb) = b, a 

contradiction. Hence B = Aa  A. ☺ 

 

Lemma 3: Sp(X)  Sp(X). 

Proof: Let M = Sp(X). It’s well-ordered by . 

If a  M then a  A  Sp(X) for some A, so Ma = Aa and 

(Ma) = (Aa) = a. ☺ 

 

Lemma 4: There’s no :Ch(X)→X such that (A) > a 

whenever a  A  Ch(X). 

Proof: Suppose such a  exists and define ‘special’ 

accordingly. 

Let M = Sp(X). 

Then since (M) is greater than every element of M, 

A = M  {(M)} is a chain. 

Since A(M) = M, (A(M)) = (M) so A  Sp(X). 

Thus A  M whence (M)  M, a contradiction. ☺ 
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Theorem 5: The Left Inverse Principle implies Zorn’s 

Lemma. 

Proof: Suppose X is a partially ordered set where every 

chain has an upper bound. Suppose X has no maximal 

element. 

Let Y = {(A, x) | x  X, A  Ch(X) and a < x 

                                                                    for all a  A}. 

Define H:Y→Ch(X) by H(A, x) = A and P:Y → X by: 

                                                                        P(A, x) = x. 

We now show that H is onto. 

 

Let A  Ch(X). If m = max(A) exists there exists M > m. 

If A has no maximum let M be an upper bound for A. 

In either case (A, M)  Y and H(A, M) = A. 

Let K:Ch(X)→Y be a left inverse for H. 

Then H(K(A)) = A for all A  Ch(X). 

Then  = KP:Ch(X)→X has the property that (A) > a 

for all a  A, a contradiction. ☺ 

 

§10.6. Hausdorff’s Maximal Principle 
The Hausdorff Maximal Principle states that 

every partially ordered set has a maximal chain. 

 

Theorem 6: Zorn’s Lemma implies the Hausdorff 

Maximal Principle. 

Proof: Let X  be a partially ordered set and let 

C = Ch(X), ordered by . 

Let D  Ch(C) and E = D. 
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Then E  Ch(X). 

E is an upper bound for D so, by Zorn’s Lemma, C has a 

maximal element. ☺ 

 

§10.7. The Well-Ordering Principle 
The Well-ordering Principle states that every set can be 

well-ordered. 

 

Theorem 7: The Hausdorff Maximal Principle implies 

the Well-ordering Principle. 

Proof: Let X be a set and let W = {(A, ) | A  X and  

is a well-ordering for A}. 

Define  on W: (A, )  (A, ) if A is an initial segment 

of A with  compatible with . 

 Since (W, ) is a partially ordered set it has, by the 

Hausdorff Maximal Principle, a maximal chain C. 

Let Y = C.  Now (Y, ) is a partially ordered set. 

Let Z be a non-empty element of Y. 

Then there exists z  A  C. 

Let m = min Z  Az = min Z  Yz = min Z. 

Thus (Y, ) is a well-ordered set. 

Since C  {Y}  Ch(W), Y  C. 

Suppose Y  X and let x  X − Y. 

Let Y = Y  {x} with  extended to make x = max Y. 

Then C  {Y }  Ch(W), and so Y   C, 

a contradiction. ☺ 
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§10.8 Well-Ordering and The Axiom of 

Choice 
Theorem 8: The Well-ordering Principle implies the 

Axiom of Choice. 

Proof: If (A, ) is a family of sets we well-order 

{(a) | a  A} and let F(a) = min (a) for each a  A.  

Then F  (A, ). ☺ 

 

Theorem 9: The Axiom of Choice implies the Left 

Inverse Principle. 

Proof: Suppose F:A → X is onto. 

Then for x  X, {a| F(a) = x}  . 

By AXC (A, F)  .  If G  (A, F) then FG = 1A. ☺ 

 

Theorem 10: Every vector space V over a field F has a 

basis. 

Proof: Let S be the set of all linearly independent subsets.  

Since 0  S, S  0.  S is partially ordered by .  The union 

of every chain of linearly independent subsets is linearly 

independent so by Zorn’s lemma there is a maximal 

linearly independent subset B.  If B doesn’t span V then 

let v  V − B and so B  {v}  S, a contradiction. ☺ 

 

§10.9. The Banach-Tarski Paradox 
This material in the rest of this chapter is based on 

Stromberg: The Banach-Tarski Paradox, American 

Mathematical Monthly, March 1979. 
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The Axiom of Choice is intuitively reasonable.  

Given any family of non-empty sets it is possible to 

choose one element from each set.  However it has been 

proven that this axiom can’t be proved from the ZF 

axioms.  The natural thing to do is to add this axiom to the 

ZF collection. However I am about to show you that, 

assuming the axiom of choice, I can prove that a solid 

sphere can be decomposed into a finite number of pieces 

and reassembled into two spheres each with the same 

radius of the original sphere!  The theorem is the Banach-

Tarski Paradox. 

This result is so counter-

intuitive that many mathematicians 

regard it as a good reason to reject 

the Axiom of Choice.  However we 

don’t actually get a contradiction. 

But wouldn’t it mean doubling the 

volume? Not really. You see the 

volume of a set of points in ℝ3 can’t 

be defined for all subsets. For 

example, what is the volume of the 

set of points whose x- and y- coordinates are rational? 
The pieces into which we ‘cut’ the sphere are so 

highly disconnected that they don’t have volumes.  It is as 

if they are just clouds of points. So any thought of going 
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into production converting spheres of solid gold into 

twice as many identical spheres must be ruled out.  

Remember that a real sphere of gold is not a mathematical 

sphere. It consists of lots of empty space and, more 

importantly, a finite number of atoms. 

You can get a feeling for the process involved if 

you consider taking the positive x-axis and cutting off the 

interval (0, 1].  What’s 

left can be translated one 

unit to the left to exactly 

cover the positive x-axis. 

We have effectively 

created a unit interval 

from nothing. 

 

The Banach-Tarski Paradox has been pounced on 

by many people as supporting certain beliefs.  The biblical 

miracle of the five loaves and three fish feeding a crowd 

of thousands has been said to be a practical application of 

the Banach-Tarski Paradox. It has been said to be the 

mechanism for the big-bang process in the way the 

universe came about. 

Of course nothing in mathematics, by itself, proves 

or disproves anything in the real world.  It may be that the 

universe was created out of nothing in a big bang, either 

by a creator God or by laws of physics. It may be true that 

the loaves and fishes in the miracle were multiplied. But 

other factors would be at work, not the Axiom of Choice. 
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In fact the Axiom of Choice has been proved to be 

both consistent with, and independent of, the other 

axioms of set theory. 

  

To Prove the Banach-Tarski Theorem, for it really 

is a theorem, we need to use some Group Theory.  (See 

my notes Group Theory volume 1.) Consider the group G 

= a, b | a2 = b3 = 1.  G is the set of words on {a, b} with 

no substring “aa” or “bbb” where two such ‘reduced’ 

words are multiplied by concatenating and reducing, 

eliminating or inserting any substring ‘aa’ or ‘bbb’. 

 

Consider the following finite-state machine. (See 

my notes Languages and Machines.) 

 

I’ll use this to classify the elements of G into three 

sets, according to the final state of the machine, when it 

starts in state 0 and reads the given string. 



 192 

For i = 0, 1, 2 let Zi be the set of elements of G 

which cause this finite-state machine to end in state i.  

Denoting disjoint unions by ‘+’ we can write: 

G = Z0 + Z1 + Z2. 

 

Now Z0 = Z1a + Z2a + Z2b + {1} 

                    Z1 = Z0a + Z0b  and 

                    Z2 = Z1b. 

 Let X0 = Z0abb + Z1a + {1}, 

                 X1 = Z0a + Z1ab + {b}, 

                 X2 = Z0ab+ Z1abb + {bb} and 

                 Y0 = Z2a, 

                 Y1 = Z2ab, 

                 Y2 = Z2abb. 

So X0 = {1, abb, ba, bbaba, ... } 

     X1 = {a, b, bab, abba, ... } 

     X2 = {ab, bb, babb, ... } 

     Y0 = {bba, aba, ... } 

     Y1 = {bbab,  ... } and 

     Y2 = {bbabb, ... }. 

Then Z0 = X0 + Y0, 

         Z1 = X1 + Y1 and 

         Z2 = X2 + Y2. 

 

The effect of a, b on these subsets is as follows 

(eg X0a = Z1):  

                                                a      b 
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§10.10. Groups of Rotations in ℝ3 
Take two axes through the origin having an angle 

 between them. Let A be the 180° rotation about axis 1 

and let B be a 120° rotation about axis 2. Let H be the 

group generated by A, B. Define a group homomorphism 

: G→H by (w) = the rotation obtained by substituting 

A for a and B for b. 

So (w1w2) = (w1)(w2) and (w−1) = (w)−1. 

For certain values of ,  will not be 1-1, and in 

fact it is possible for H to be finite. For example if  = 0 

then ab = ba and H consists of rotations through multiples 

of 60. And if  = 90 then H is the rotation group of a 

triangular prism, with order 6. 

 

If  = tan−1 2, H is the rotation group of a cube and 

|H| = 24. However if cos  is transcendental (this is the 

case for all but a countable number of values, and in 

particular it can be shown that this is so for  = 1)  is 
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1-1. In such cases every rotation in H can be uniquely 

represented by a reduced word in G. We suppose that  is 

such a value. 

 

Let S be the surface of a unit sphere and for all P  S let 

G(P) ={(g)(P) | g  G} denote the G-orbit of P. 

Then S splits into uncountably many orbits. 

 

By the Axiom of Choice we may choose a set C of 

representatives from these orbits, and so for every P  S, 

P = (g)(Q) for some unique Q  C. Is g also unique? 

A pole of a rotation R is a point on the unit sphere 

which is fixed by R. Every non-trivial rotation has exactly 

2 poles.  For a rotation group H, a pole is a point on the 

unit sphere which is the pole of some 1  h  H. Every 

other point on the unit sphere is a non-pole. 

 

If P = (g)(Q) = (h)(Q) for g  h then Q is a pole of the 

rotation (g)(h)−1 = (gh−1), and this is non-trivial since 

 is 1-1. Let (G) be the set of poles for the rotation group 

G. 

 

Each non-pole is (g)(Q) for some unique Q  C 

and some unique g  G. The non-poles can thus be 

partitioned into subsets according to the partition of G and 

so the surface S is thus decomposed into 7 subsets: 

(G), X0, X1, X2, Y0, Y1, Y2. 
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By the 

rotation a: 

X0 → X1 + Y1 

Y0 → X2 + Y2 

By the 

rotation bbab: 

X1 → X2 + Y2 

Y1 → X0 + Y0 

By the 

rotation babb: 

X2 → X0 + Y0 

Y2 → X1 + Y1 

 

These seven pieces can therefore be rotated by 

suitable rotations and reassembled to give one complete 

copy of S plus a second copy, excluding the poles. We 

have to work a little harder to get another copy of (G). 

 

§10.11. The Finale 
Theorem 11 (BANACH-TARSKI): The surface of a 

unit sphere can be decomposed into finitely many pieces 

and be reassembled into two unit spheres (using only rigid 

motions). 

Proof: Let c be a rotation through  about a third axis and 

choose  so that , c(), c2(), … are disjoint (this is 

possible because there are countably many angles 

between the elements of (G) and uncountably many 

possible values of ). 

 Let U = c() + c2() + … 

                 V = S −  − U. 

Thus S = (G) + U + V.  Note that c−1(U) = (G) + U. 

Cut S into these 3 pieces.  Rotate U by c−1 to give 

(G) + U.  We now have the original sphere plus a second 

copy of (G). 
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We now cut this new sphere into the 7 pieces as 

above and, with the second copy of (G), assemble them 

into two complete unit spheres. 

# piece rotated by gives 

1 (G) 1 (1) 

2 U  X0 c−1a (1) + [(3) + (6)] 

+ [(4) + (7)] 

+ [(2) + (5)] 

+ [(4) + (7)] 

+ [(2) + (5)] 

+ [(3) + (6)] 

3 U  X1 c−1babb 

4 U  X2 c−1bbab 

5 U  Y0 c−1a 

6 U  Y1 c−1babb 

7 U  Y2 c−1bbab 

8 V  X0 c−1a (10) + (13) 

9 V  X1 c−1babb (8) + (11) 

10 V  X2 c−1bbab (9) + (12) 

11 V  Y0 c−1a (10) + (13) 

12 V  Y1 c−1babb (8) + (11) 

13 V  Y2 c−1bbab (9) + (12) 

TOTAL S  S + S 

 

In fact (R.M. Robinson 1947) it can be done with just five 

pieces. A solid sphere can likewise be decomposed into 

finitely many pieces and reassembled to form two spheres 

of the same size. Simply replace each point on the surface 

S by the corresponding ray and include the origin with the 

poles. 

 


